Search results for "Topological degeneracy"

showing 4 items of 4 documents

Topological transitions from multipartite entanglement with tensor networks: a procedure for sharper and faster characterization

2014

Topological order in a 2d quantum matter can be determined by the topological contribution to the entanglement R\'enyi entropies. However, when close to a quantum phase transition, its calculation becomes cumbersome. Here we show how topological phase transitions in 2d systems can be much better assessed by multipartite entanglement, as measured by the topological geometric entanglement of blocks. Specifically, we present an efficient tensor network algorithm based on Projected Entangled Pair States to compute this quantity for a torus partitioned into cylinders, and then use this method to find sharp evidence of topological phase transitions in 2d systems with a string-tension perturbation…

PhysicsQuantum PhysicsStrongly Correlated Electrons (cond-mat.str-el)Topological degeneracyHigh Energy Physics - Lattice (hep-lat)General Physics and AstronomyFOS: Physical sciencesQuantum topologyTopologySquashed entanglement530Topological entropy in physicsMultipartite entanglementSymmetry protected topological orderCondensed Matter - Strongly Correlated ElectronsHigh Energy Physics - LatticeTopological orderQuantum Physics (quant-ph)Topological quantum number
researchProduct

Topological field theory

1991

PhysicsTopological quantum field theoryTopological algebraTopological degeneracyGeneral Physics and AstronomyTopological orderBF modelTopological entropy in physicsSymmetry protected topological orderGeneral Theoretical PhysicsTopological quantum numberMathematical physicsPhysics Reports
researchProduct

Quantum order by disorder in the Kitaev model on a triangular lattice

2015

We identify and discuss the ground state of a quantum magnet on a triangular lattice with bond-dependent Ising-type spin couplings, that is, a triangular analog of the Kitaev honeycomb model. The classical ground-state manifold of the model is spanned by decoupled Ising-type chains, and its accidental degeneracy is due to the frustrated nature of the anisotropic spin couplings. We show how this subextensive degeneracy is lifted by a quantum order-by-disorder mechanism and study the quantum selection of the ground state by treating short-wavelength fluctuations within the linked cluster expansion and by using the complementary spin-wave theory. We find that quantum fluctuations couple next-n…

PhysicsStrongly Correlated Electrons (cond-mat.str-el)Topological degeneracyFOS: Physical sciencesCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCondensed Matter Physics; Electronic Optical and Magnetic MaterialsCondensed Matter - Strongly Correlated ElectronsQuantum mechanicsElectronicHexagonal latticeOptical and Magnetic MaterialsGround stateDegeneracy (mathematics)QuantumQuantum fluctuationCluster expansionSpin-½Physical Review B
researchProduct

A large-energy-gap oxide topological insulator based on the superconductor BaBiO3

2013

Mixed-valent perovskite oxides based on BaBiO3 (BBO) are, like cuperates, well-known high-Tc superconductors. Recent ab inito calculations have assigned the high-Tc superconductivity to a correlation-enhanced electron--phonon coupling mechanism, stimulating the prediction and synthesis of new superconductor candidates among mixed-valent thallium perovskites. Existing superconductivity has meant that research has mainly focused on hole-doped compounds, leaving electron-doped compounds relatively unexplored. Here we demonstrate through ab inito calculations that BBO emerges as a topological insulator (TI) in the electron-doped region, where the spin-orbit coupling (SOC) effect is significant.…

Band gapTopological degeneracyAb initioOxideGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technology01 natural sciencesSuperconductivity (cond-mat.supr-con)Condensed Matter::Materials Sciencechemistry.chemical_compoundCondensed Matter::Superconductivity0103 physical sciencesTopological orderPhysics::Chemical Physics010306 general physicsCondensed Matter::Quantum GasesPhysicsSuperconductivityCondensed Matter - Materials ScienceCondensed matter physicsCondensed Matter - SuperconductivityDopingMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologychemistryTopological insulatorCondensed Matter::Strongly Correlated Electrons0210 nano-technologyNature Physics
researchProduct